ROADWAY PAVEMENT MAINTENANCE REPORT

VILLAGE OF KIRTLAND HILLS
The Northeast Ohio Areawide Coordinating Agency (NOACA) is a public organization serving the counties of and municipalities and townships within Cuyahoga, Geauga, Lake, Lorain and Medina (covering an area with 2.1 million people). NOACA is the agency designated or recognized to perform the following functions:

- Serve as the Metropolitan Planning Organization (MPO), with responsibility for comprehensive, cooperative and continuous planning for highways, public transit, and bikeways, as defined in the current transportation law.
- Perform continuous water quality, transportation-related air quality and other environmental planning functions.
- Administer the area clearinghouse function, which includes providing local government with the opportunity to review a wide variety of local or state applications for federal funds.
- Conduct transportation and environmental planning and related demographic, economic and land use research.
- Serve as an information center for transportation and environmental and related planning.
- As directed by the Board, provide transportation and environmental planning assistance to the 172 units of local, general purpose government.

The NOACA Board of Directors is composed of 45 local public officials. The Board convenes quarterly to provide a forum for members to present, discuss and develop solutions to local and areawide issues and make recommendations regarding implementation strategies. As the area clearinghouse for the region, the Board makes comments and recommendations on applications for state and federal grants, with the purpose of enhancing the region’s social, physical, environmental and land use/transportation fabric. NOACA invites you to take part in its planning process. Feel free to participate, to ask questions and to learn more about areawide planning.

For more information, call (216) 241-2414 or log on at http://www.noaca.org
2018 NOACA Board of Directors

Board Officers
- **President:** Armond Budish, County Executive, Cuyahoga County
- **First Vice President:** Valarie J. McCall, Chief of Government & International Affairs, City of Cleveland
- **Second Vice President:** Timothy C. Lennon, Commissioner, Geauga County
- **Secretary:** Ted Kalo, Commissioner, Lorain County
- **Assistant Secretary:** Holly C. Brinda, Mayor, City of Elyria
- **Assistant Secretary:** Michael P. Summers, Mayor, City of Lakewood
- **Treasurer:** Daniel P. Troy, Commissioner, Lake County
- **Assistant Treasurer:** James R. Gill, P.E., P.S., Lake County Engineer
- **Assistant Treasurer:** Kirsten Holzheimer Gail, Mayor, City of Euclid
- **Immediate Past President:** Adam Friedrick, Commissioner, Medina County

Board Members

Cuyahoga County
- Samuel J. Alai, Mayor, City of Broadview Heights
- Annette M. Blackwell, Mayor, City of Maple Heights
- Pamela Bobst, Mayor, City of Rocky River
- Michael Dylan Brennan, Mayor, City of University Heights
- Tanisha R. Briley, City Manager, Cleveland Heights
- Armond Budish, County Executive
- Glenn Coyne, Executive Director, Planning Commission
- Timothy J. DeGeeter, Mayor, City of Parma
- Michael W. Dever, MPA, Public Works Director
- Kirsten Holzheimer Gail, Mayor, City of Euclid
- Michael D. Gammella, Mayor, City of Brook Park
- Dale Miller, County Councilman
- David H. Roche, Mayor, City of Richmond Heights
- Robert A. Stefanik, Mayor, City of North Royalton
- Michael P. Summers, Mayor, City of Lakewood

City of Cleveland
- Anthony Brancatelli, City Councilman
- Freddy L. Collier, Jr., Director, City Planning Commission
- Blaine A. Griffin, City Councilman
- Frank G. Jackson, Mayor, City of Cleveland
- Martin J. Keane, City Councilman
- Valarie J. McCull, Chief of Government & International Affairs
- Matthew L. Sronz, P.E., PMP, Capital Projects Director

Geauga County
- Walter “Skip” Claypool, County Commissioner
- Timothy C. Lennon, County Commissioner
- Ralph Spidalieri, County Commissioner

Lorain County
- Holly C. Brinda, Mayor, City of Elyria
- Kenneth P. Carney, S., P.E., P.S., County Engineer
- Richard Heidecker, Trustee, Columbia Township
- John D. Hunter, Mayor, Village of Sheffield
- Ted Kalo, County Commissioner
- Matt Lundy, County Commissioner

Lake County
- Ben Capelle, General Manager, Laketran
- Jerry C. Cirino, County Commissioner
- James R. Gill, P.E., P.S., County Engineer
- John Hamercheck, County Commissioner
- Daniel P. Troy, County Commissioner

Medina County
- Jeff Brandon, Trustee, Montville Township
- Andrew H. Conrad, P.E., P.S., County Engineer
- Adam Friedrick, County Commissioner
- Patrick Patton, City Engineer, City of Medina

Regional and State
- Greater Cleveland Regional Transit Authority (GCRTA)
- Joseph A. Calabrese, CEO and General Manager
- Northeast Ohio Regional Sewer District (NEORSD)
- Kyle Dreyfuss-Wells, Chief Executive Officer
- Cleveland-Cuyahoga County Port Authority
- William D. Friedman, President/CEO
- Ohio Department of Transportation (ODOT)
- Myron S. Pakush, Deputy Director, District 12

Ex Officio Member:
- Kurt Princic, Chief, Northeast District Office, Ohio Environmental Protection Agency (OEPACA)
- Jonathan Giblin, Associate Director of Compliance

Grace Gallucci, Executive Director
Billie Geyer, Comptroller
Marvin Hayes, Director of Communications & Public Affairs
Randy Lane, Director of Programming
Susanna Merlone, EMBA, Director of Administrative Services
Kathy Sarli, Director of Planning
Table of Contents

1. Executive Summary ... 2
2. Background .. 3
3. PART I: 2016 Pavement Condition ... 8
4. PART II: 2018 Current Backlog .. 12
5. PART III: Maintenance & Rehabilitation (M&R) Program .. 13
6. PART IV: Comparative Analysis ... 15
7. Appendix .. 19

Maps

1: Village of Kirtland Hills Location in the NOACA Region.. 4
2: 2016 Village of Kirtland Hills Pavement Condition .. 10

Figures

1: 2016 Kirtland Hills Pavement Network Condition Chart by Lane-Miles ... 9
2: The PCR Acceptable Level and “Need Year” Relation ... 13
3: Average PCR Comparison by the Constraint Scenarios and by Year ... 17

Tables

1: Selected Pavement Treatments and Their Planning Level Costs .. 6
2: 2016 Kirtland Hills Pavement Network Condition .. 8
3: 2016 Village of Kirtland Hills Pavement Condition Listing ... 11
4: Performance Comparison of the Constraint Scenarios ... 16

Appendix

The “2018 Current Backlog” Pavement Treatment List .. 19
The “Maintain 15% Deficiency” Pavement Treatment List .. 20
The “Maintain an Average Network PCR of 80” Pavement Treatment List ... 21
The “M&R” Pavement Treatment List ... 22
The “Maintain Lowest Standard PCR” Pavement Treatment List .. 23
EXECUTIVE SUMMARY

The 2016 Ohio Department of Transportation (ODOT) pavement database has 3,626 segment records for the Northeast Ohio Areawide Coordinating Agency (NOACA) region. The NOACA region has a total of 3,330 centerline miles of roadways including freeways and federal-aid highways which is equivalent to 8,561 lane-miles. The regional segment average Pavement Condition Ratings (PCR) is about 77.

In the Village of Kirtland Hills there are 6.59 centerline miles of federal-aid roads, which are equivalent to 13.18 lane-miles within the village boundary that include Interstate 90 (I 90), State Route 84 (SR 84), and State Route 615 (SR 615). The 2016 ODOT pavement database has seven segment records for the Village of Kirtland Hills roadway system. Each record comprises of several fields of various information and measures such as Street name, Length (miles), Lane-miles length, Number of Lanes, Function Class, Pavement Condition Ratings (PCR), etc.

According to the PCR measure, about 54 percent of the pavement lane-miles are currently in the “Good” to “Very Good” condition. The rest of the lane-miles are in the “Fair” status and demand some kind of preventive maintenance to keep the road in good condition.

This pavement study includes four parts:

- Part I: The 2016 pavement network condition,
- Part II: The 2018 backlog,
- Part III: The Maintenance and Rehabilitation (M&R) program,
- Part IV: The Comparative analysis.

Considering the five-year study period of 2018 - 2022, this pavement study focuses on the required preventive maintenance treatments and some rehabilitation techniques rather than reconstruction.

Part I of this study analyzes the 2016 pavement network condition and tabulates the important information of all the seven road segments in the Village of Kirtland Hills.

In Part II, the backlog is defined as the cost of pavement rehabilitation of all roads within one year (2018) and bringing the average network PCR to 80. Backlog is a “snapshot” or relative measure of outstanding rehabilitation work.

Part III introduces the optimal preventive maintenance and rehabilitation strategy for each segment and its recommended implementation year based on the NOACA maintenance decision tree.

Finally, Part IV compares the backlog and the “M&R” program with the NOACA transportation asset management strategies. All these strategies were compared regarding their costs, the average network PCR and percent of the lane-miles below the acceptable level.
Kirtland Hills is a village in Lake County. Daniel Holbrook, II, was a stockholder in the Connecticut Western Reserve Land Company and obtained land in the Northwest Territory. Holbrook’s parcels, including Kirtland, were given to agent Moses Cleaveland to subdivide and sell. Turhand Kirtland, a principal in the Connecticut Land Company, veteran of the American Revolutionary War, and a judge in Trumbull County purchased the Kirtland parcel that was later named after him.

As of the Northeast Ohio Areawide Coordinating Agency (NOACA) 2015 estimates, the Village had a population of 642 and employment of 116. The Village of Kirtland Hills includes Interstate 90 (I 90), State Route 84 (SR 84), and State Route 615 (SR 615). Cleveland-Hopkins International Airport is the nearest airport.

Map 1 illustrates the Village of Kirtland Hills location in the NOACA region.
Map 1: Village of Kirtland Hills Location in the NOACA Region
For the purpose of this study:

Pavement Reconstruction is defined as the replacement or reestablishment of the original pavement structural capacity by the placement of the equivalent or increased pavement structure. Reconstruction may utilize either new or recycle materials for the reconstruction of the complete pavement structure.

Pavement Rehabilitation is defined as resurfacing, restoration, and rehabilitation (3R) work consisting of structural enhancements that extend the service life of an existing pavement and/or improve its structural capacity. Rehabilitation techniques include restoration treatments and/or structural overlays. This may include partial recycling of the existing pavement, placement of additional surface materials, and/or other work necessary to return an existing pavement to a condition of structural or functional adequacy.

Preventive Maintenance is considered as cost effective treatments to an existing roadway system and its appurtenances that preserves the system, delays future deterioration, and maintains or improves the functionality condition of the system without increasing structural capacity. Projects that address deficiencies in the pavement structure or increase the structural capacity of the facility are not considered preventive maintenance.

Maintaining the roadways in a state of good repair is essential and experience has shown that, over time it is less expensive to invest in preventive maintenance and/or rehabilitation in an ongoing basis rather than in reconstruction of pavement that has deteriorated to a poor condition.

This pavement study analyzes the current status of the Kirtland Hills pavement network condition and considers the five-year study period of 2018-2022. It mainly focuses on the required roadway pavement preventive maintenance treatments and some rehabilitation techniques rather than reconstruction. The 2016 Ohio Department of Transportation (ODOT) pavement database was used as the input data and RoadMatrix software was utilized as the NOACA Pavement Management platform.

Seven roadway pavement preventive maintenance and rehabilitation treatments were considered in the Kirtland Hills pavement network analysis for the study period and Table 1 illustrates the selected treatment and their associated planning level costs.
Table 1: Selected Pavement Treatments and Their Planning Level Costs

<table>
<thead>
<tr>
<th>Maintenance Treatment Type</th>
<th>Cost per SQ FT (2016$)</th>
<th>Estimated Cost per 12-Ft lane-Mile (2016$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Fill</td>
<td>0.08</td>
<td>5,100</td>
</tr>
<tr>
<td>Joint Repair</td>
<td>0.24</td>
<td>15,200</td>
</tr>
<tr>
<td>Crack Fill and Slurry</td>
<td>0.4</td>
<td>25,300</td>
</tr>
<tr>
<td>Preventive Maintenance Minor</td>
<td>0.5</td>
<td>31,700</td>
</tr>
<tr>
<td>Micro – Pave Type</td>
<td></td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>Selective Patch, Mill and 1.5” O/L</td>
<td>1.5</td>
<td>95,000</td>
</tr>
<tr>
<td>2.0 inch Hot Mix Mill and Overlay</td>
<td>1.9</td>
<td>120,400</td>
</tr>
</tbody>
</table>

Pavement Maintenance Treatment Definitions

Crack Fill: it is the placement of asphalt emulsion into non-working cracks to reduce water infiltration and to reinforce the adjacent pavement.

Slurry Seal: a mixture of fine aggregate, asphalt emulsion, water, and mineral filler, used when the primary problem is excessive oxidation and hardening of the existing surface. Slurry seals are used to retard surface raveling, and improve surface friction.

Joint Repair: used to remove deteriorated concrete pavement long joint/crack repairs. It minimizes infiltration of surface water and incompressible material into the joint system.
The Village of Kirtland Hills Roadway Pavement Maintenance Report

Preventive Maintenance (Minor): typically applied to pavements in good condition having significant remaining service life. Examples of minor preventive treatments include asphalt crack sealing, chip sealing, slurry or micro-surfacing, thin and ultra-thin hot-mix asphalt overlay, and concrete joint sealing.

Micro – Pave (Type II Surface Treatment): consist of the application of a mixture of water, asphalt emulsion, aggregate (very small crushed rock), and chemical additives. It is used to treat surfacing and rut filling on roads that get moderate to heavy levels of traffic.

2.0 in Hot Mix Mill & Overlay: applied as a maintenance treatment. Thin overlays should only be placed on structurally sound pavements. That is because they offer little structural improvement, but they can renew the surface in terms of functional performance (i.e., ride quality).

Selective Patching, Mill & 1.5 O/L: it is primarily done to extend the life of a roadway. Patch mill and overlay projects are designed to remove damaged portions of the roadway and replace it with new smooth pavement.

This report includes the following four parts:

I. The 2016 status of the Kirtland Hills pavement network condition,
II. The 2018 “backlog” treatment list,
III. The optimal preventive maintenance and rehabilitation strategies, and
IV. The comparative analysis.
In order to provide an accurate assessment of the current status and further pavement analyses, the pavement network is required to be divided into homogeneous discrete sections in terms of surface distress, traffic volumes, pavement structure, etc. The 2016 ODOT pavement database has seven segment records for the Village of Kirtland Hills roadway system. Each record comprises of several fields of various information and measures such as Street name, Length (miles), Lane-miles length, Number of Lanes, Function Class, Pavement Condition Ratings (PCR), etc.

Based on the utilized ODOT database, there are 6.59 centerline miles of federal-aid eligible roads which are equivalent to 13.18 lane-miles in the Village of Kirtland Hills. The total area of roadway is 927,590 Sq. Ft.

The PCR measure is a qualitative description of the structural state of the pavement. The PCR values span a spectrum of descriptive narrative ranging from “Very Good” to “Very Poor”. Each roadway segment is scored from 0 to 100 with 0 representing completely distressed pavement and 100 indicating perfect pavement condition. The lane-mile weighted average of the Village of Kirtland Hills segment PCRs is about 75. Table 2 and Figure 1 summarize the 2016 Kirtland Hills pavement network conditions by percentages of roadway lane-miles length.

Table 2: 2016 Kirtland Hills Pavement Network Condition

<table>
<thead>
<tr>
<th>Pavement Condition</th>
<th>PCR Range</th>
<th>Lane-Miles</th>
<th>Percent of Lane-Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Poor</td>
<td>0 - 39</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Poor</td>
<td>40 - 54</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Fair to Poor</td>
<td>55 - 64</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Fair</td>
<td>65 - 74</td>
<td>6.12</td>
<td>46.4%</td>
</tr>
<tr>
<td>Good</td>
<td>75 - 89</td>
<td>6.86</td>
<td>52.1%</td>
</tr>
<tr>
<td>Very Good</td>
<td>90 - 100</td>
<td>0.20</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
As indicated, about 54 percent of the lane-miles pavement are currently in the “Good” to “Very Good” condition and the lane-mile weighted average PCR also represents a “Good” condition. The rest of the lane-miles are in the “Fair” status and demand some kind of preventive maintenance treatments.

Map 2 illustrates the 2016 Kirtland Hills roadway pavement condition for each segment record and Table 3 tabulates the 2016 Kirtland Hills pavement condition listing.
Map 2: 2016 Village of Kirtland Hills Pavement Condition
Table 3: 2016 Village of Kirtland Hills Pavement Condition Listing

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>FUNCTION CLASS</th>
<th>LANE-MILES</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOTH RD</td>
<td>0.10 MILE N OF FOREST EDGE DR</td>
<td>BALDWIN RD</td>
<td>MAJOR COLLECTOR</td>
<td>2.50</td>
<td>74</td>
</tr>
<tr>
<td>CHILlicoTHE RD</td>
<td>CENTER ST</td>
<td>JOHNNYCAKE RIDGE RD</td>
<td>MAJOR COLLECTOR</td>
<td>3.12</td>
<td>77</td>
</tr>
<tr>
<td>HART RD</td>
<td>BALDWIN RD</td>
<td>LITTLE MOUNTAIN RD</td>
<td>MAJOR COLLECTOR</td>
<td>1.36</td>
<td>77</td>
</tr>
<tr>
<td>HART RD</td>
<td>HART RD</td>
<td>BOOTH RD</td>
<td>MAJOR COLLECTOR</td>
<td>0.20</td>
<td>100</td>
</tr>
<tr>
<td>KING MEMORIAL RD</td>
<td>LITTLE MOUNTAON RD</td>
<td>MENTOR RD/KING MEMORIAL RD</td>
<td>MAJOR COLLECTOR</td>
<td>0.14</td>
<td>89</td>
</tr>
<tr>
<td>LITTLE MOUNTAIN RD</td>
<td>MENTOR RD/KING MEMORIAL RD</td>
<td>CHILlicoTHE RD</td>
<td>MAJOR COLLECTOR</td>
<td>3.62</td>
<td>71</td>
</tr>
<tr>
<td>SR 615</td>
<td>KIRTLAND RD</td>
<td>0.20 MILES W OF CENTER ST</td>
<td>MINOR ARTERIAL</td>
<td>2.24</td>
<td>77</td>
</tr>
</tbody>
</table>
PART II: 2018 CURRENT BACKLOG

The backlog is defined as the cost of pavement rehabilitation of all roads within the current year (2018) and bringing the average network PCR to 80. Backlog is a “snapshot” or relative measure of outstanding rehabilitation work. The backlog not only represents how far behind the pavement network is in terms of its present physical condition, but also its cost value serves as a benchmark to measure the impact of various funding strategies. Additionally, the current backlog offers a basis for comparison to future and/or past year’s backlogs.

The backlog strategy does not utilize any pavement preventive maintenance treatments, but instead considers rehabilitation or reconstruction treatments. This strategy achieves the average network PCR 80, and also maintains all the pavement conditions above the minimum acceptable level. In this study, the minimum acceptable PCR for the arterial roadway function class is 55 and for the major and minor collector is 50.

The Appendix includes all the backlog pavement treatments. As illustrated, the 2018 backlog treatment list includes segments which their 2018 PCRs are below the minimum acceptable level and are recommended with various reconstruction treatments. There are two segments in the 2018 backlog list with the total of 6.12 lane-miles. The 2018 backlog cost of the recommended treatments is about 1.5 million dollars.
In order to estimate the preventive maintenance and rehabilitation requirements of a pavement network over a period of time, the first step is to determine the “Need Year” or when a pavement segment requires rehabilitation. The “Need Year” of a pavement is defined as the year in which the pavement condition falls below a critical level. Pavement condition of a road segment deteriorates under traffic, climate, etc. and consequently its PCR value is reduced. Without any treatments and depending on the deteriorating factors, pavements perform differently and Figure 2 depicts the typical acceptable level and “Need Year” relation for several road segments. As shown, the definition of the acceptable level is a critical factor in determining the “Need Year” for any road segment.

In this study, the critical level is set by the minimum acceptable PCR. As mentioned earlier, in the NOACA region, the minimum acceptable PCR for the arterial roadway function class is 55 and for the major and minor collector is 50.

Figure 2: The PCR Acceptable Level and “Need Year” Relation
The second step is to determine any feasible preventive maintenance and/or rehabilitation strategies based on a decision tree approach. The “M&R” program determines the optimal preventive maintenance and rehabilitation strategy for each segment and its recommended implementation year based on the considered decision tree. The Appendix includes all the “M&R” treatments for the identified segments with the implementation year in the period of 2018 to 2022 and the “M&R” program cost includes all the deferred maintenance cost.
The current NOACA transportation asset management policy includes two strategies:

- Maintain 15% Deficiency: this strategy attempts to maintain the total lane-miles with PCR below the acceptable level no more than 15%.
- Maintain an Average Network PCR of 80: applies a set of maintenance treatments in order to keep the roadway network average PCR more than or equal to 80 over the study period.

This section compares the discussed backlog and the “M&R” program treatments with the NOACA transportation asset management strategies.

In addition to the above strategies, this comparative analysis considers another scenario as the minimum benchmark. The “Maintain Lowest Standard PCR” treatment strategy is based on the minimum PCR thresholds of 55 for arterials and 50 for collectors and a set of annual budget constraints. The annual budget constraints are calculated in three steps: First, the segments with the “M&R” recommended implementation in each specific analysis year are selected. Second, a subset of the selected segments which their “Need Years” are in the analysis period are identified. It should be noted that the selected segments with the “Need Year” beyond the analysis period are excluded from the budget constraint calculation. Third, the “M&R” treatment costs for the identified segments in the second step, are added together to provide an annual budget constraint for this scenario.

As discussed, all the above scenarios apply a decision tree approach to determine technically feasible maintenance and rehabilitation strategies for each segment requiring rehabilitation during the five-year period.

Table 4 summarizes the comparison results of all the above scenarios over the five-year period for the Village of Kirtland Hills. In this table, the “5-Year Total Required Dollars” column shows the accumulation of the annual costs over five years calculated based on inflation-adjusted dollars for each strategy. Also, the Network average PCR is the lane-mile weighted average.
Table 4: Performance Comparison of the Constraint Scenarios

<table>
<thead>
<tr>
<th>Maintenance Strategy</th>
<th>Strategy Group</th>
<th>5-Year Total Required Dollars</th>
<th>Network Average PCR</th>
<th>Network PCR at the End of the 5-Year Period</th>
<th>Percent of Pavement below the Minimum PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Current Backlog</td>
<td>2018 Backlog</td>
<td>1,494,136</td>
<td>82</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Maintain 15% Deficiency</td>
<td>NOACA Transportation</td>
<td>0</td>
<td>66.9</td>
<td>60.9</td>
<td>0%</td>
</tr>
<tr>
<td>Maintain an Average Network PCR of 80</td>
<td>Asset Management Targets</td>
<td>245,734</td>
<td>72.2</td>
<td>67.8</td>
<td>0%</td>
</tr>
<tr>
<td>M&R Program</td>
<td>Scenarios</td>
<td>245,734</td>
<td>72.2</td>
<td>67.8</td>
<td>0%</td>
</tr>
<tr>
<td>Maintain Lowest Standard PCR</td>
<td></td>
<td>0</td>
<td>66.9</td>
<td>60.9</td>
<td>0%</td>
</tr>
</tbody>
</table>

Note: The backlog required budget is for the year of 2018 only.

The Appendix lists all the treatments with their implementation years in the period of 2018 to 2022 for the above maintenance strategies.

Figure 3 illustrates the annual network average PCR for the discussed maintenance and rehabilitation strategies. It should be noted that the backlog scenario has only one value of 82 for 2018.
Figure 3: Average PCR Comparison by the Constraint Scenarios and by Year
This village has seven segment records mostly with high PCR. The “M&R” and the “Maintain an Average Network PCR of 80” strategies maintain the pavement conditions in the ‘Good’ level with the cost of nearly a quarter million dollars. The other two scenarios of “Maintain 15% deficiency” and “Maintain Lowest Standard PCR” do not recommend any treatments.

It should be noted that the backlog cost as the benchmark is six times more than the “M&R” program cost. This comparison indicates that the annual maintenance investment provides a better pavement management policy with much smaller budget than the reconstruction treatments with high costs.
2018 Current Backlog

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDATION TREATMENT</th>
<th>LANE-MILES</th>
<th>TREATMENT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOTH RD</td>
<td>0.10 MILE N OF FOREST EDGE DR</td>
<td>BALDWIN RD</td>
<td>2.0IN. HOT MIX MILL & OVERLAY</td>
<td>2.50</td>
<td>289,733</td>
</tr>
<tr>
<td>LITTLE MOUNTAIN RD</td>
<td>MENTOR RD/KING MEMORIAL RD</td>
<td>CHILlicothe RD</td>
<td>PREVENTATIVE MAINTENANCE</td>
<td>3.62</td>
<td>1,204,403</td>
</tr>
</tbody>
</table>

REQUIRED BACKLOG BUDGET (2018$)

$1,494,136
Maintain 15% Deficiency

As indicated in Table 4, the “Maintain 15% Deficiency” cost is zero and therefore, this strategy does not recommend any pavement maintenance treatments.
Maintain an Average Network PCR of 80

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOTH RD</td>
<td>0.1 MILE NORTH OF FOREST EDGE DR</td>
<td>BALDWIN RD</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>2.50</td>
<td>76,246 2018</td>
</tr>
</tbody>
</table>

THE 2018 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY
76,246

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILLICOTHE RD</td>
<td>CENTER ST</td>
<td>JOHNNYCAKE RIDGE RD / SR 84</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>3.12</td>
<td>115,244 2019</td>
</tr>
<tr>
<td>HART RD</td>
<td>BALDWIN RD</td>
<td>LITTLE MOUNTAIN RD</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>1.36</td>
<td>50,234 2019</td>
</tr>
</tbody>
</table>

THE 2019 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY
165,478

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>KING MEMORIAL RD</td>
<td>LITTLE MOUNTAIN RD</td>
<td>MENTOR RD/KING MEMORIAL RD</td>
<td>CRACK FILL & SLURRY</td>
<td>0.14</td>
<td>4,010 2021</td>
</tr>
</tbody>
</table>

THE 2021 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY
4,010

Note: The “Maintain an Average Network PCR of 80” strategy does not have any pavement maintenance treatments with the recommended implementation years of 2020 and 2022.
M&R Program

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>APPROPRIATE TREATMENT</td>
<td></td>
<td>COST</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YEAR</td>
<td></td>
<td>(2018$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LANE-MILES</td>
<td></td>
<td>YEAR</td>
</tr>
<tr>
<td>BOOTH RD</td>
<td>0.1 MILE NORTH OF FOREST EDGE DR</td>
<td>BALDWIN RD</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>2.50</td>
<td>76,246</td>
</tr>
<tr>
<td>CHILLICOTHE RD</td>
<td>CENTER ST</td>
<td>JOHNNYCAKE RIDGE RD / SR 84</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>3.12</td>
<td>115,244</td>
</tr>
<tr>
<td>HART RD</td>
<td>BALDWIN RD</td>
<td>LITTLE MOUNTAIN RD</td>
<td>PREVENTATIVE MAINTENANCE MINOR</td>
<td>1.36</td>
<td>50,234</td>
</tr>
<tr>
<td>KING MEMORIAL RD</td>
<td>LITTLE MOUNTAIN RD</td>
<td>MENTOR RD/KING MEMORIAL RD</td>
<td>CRACK FILL & SLURRY</td>
<td>0.14</td>
<td>4,010</td>
</tr>
<tr>
<td>THE 2018 REQUIRED BUDGET FOR THE “M&R” PROGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE 2019 REQUIRED BUDGET FOR THE “M&R” PROGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE 2021 REQUIRED BUDGET FOR THE “M&R” PROGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The “M&R” program does not have any pavement maintenance treatments with the recommended implementation years of 2020 and 2022.
Maintain Lowest Standard PCR

As indicated in Table 4, the “Maintain Lowest Standard PCR” cost is zero and therefore, this strategy does not recommend any pavement maintenance treatments.
NORTHEAST OHIO AREA WIDE COORDINATING AGENCY
1299 Superior Ave.
Cleveland, Ohio 44114

Phone: 216-241-2414 FAX: 216-621-3024
www.noaca.org
noaca.org @noaca_mpo