The Northeast Ohio Areawide Coordinating Agency (NOACA) is a public organization serving the counties of and municipalities and townships within Cuyahoga, Geauga, Lake, Lorain and Medina (covering an area with 2.1 million people). NOACA is the agency designated or recognized to perform the following functions:

- Serve as the Metropolitan Planning Organization (MPO), with responsibility for comprehensive, cooperative and continuous planning for highways, public transit, and bikeways, as defined in the current transportation law.
- Perform continuous water quality, transportation-related air quality and other environmental planning functions.
- Administer the area clearinghouse function, which includes providing local government with the opportunity to review a wide variety of local or state applications for federal funds.
- Conduct transportation and environmental planning and related demographic, economic and land use research.
- Serve as an information center for transportation and environmental and related planning.
- As directed by the Board, provide transportation and environmental planning assistance to the 172 units of local, general purpose government.

The NOACA Board of Directors is composed of 45 local public officials. The Board convenes quarterly to provide a forum for members to present, discuss and develop solutions to local and areawide issues and make recommendations regarding implementation strategies. As the area clearinghouse for the region, the Board makes comments and recommendations on applications for state and federal grants, with the purpose of enhancing the region’s social, physical, environmental and land use/transportation fabric. NOACA invites you to take part in its planning process. Feel free to participate, to ask questions and to learn more about areawide planning.

For more information, call (216) 241-2414 or log on at http://www.noaca.org
2018 NOACA BOARD OF DIRECTORS

BOARD OFFICERS

President: Armond Budish, County Executive, Cuyahoga County
First Vice President: Valarie J. McCall, Chief of Government & International Affairs, City of Cleveland
Second Vice President: Timothy C. Lennon, Commissioner, Geauga County
Secretary: Ted Kalo, Commissioner, Lorain County

Assistant Secretary: Holly C. Brinda, Mayor, City of Elyria
Assistant Secretary: Michael P. Summers, Mayor, City of Lakewood
Treasurer: Daniel P. Troy, Commissioner, Lake County
Assistant Treasurer: James R. Gills, P.E., P.S., Lake County Engineer

Assistant Treasurer: Kirsten Holzheimer Gail, Mayor, City of Euclid
Immediate Past President: Adam Friedrick, Commissioner, Medina County

BOARD MEMBERS

CUYAHOGA COUNTY
Samuel J. Alai, Mayor, City of Broadview Heights
Annette M. Blackwell, Mayor, City of Maple Heights
Pamela Bobst, Mayor, City of Rocky River
Michael Dylan Brennan, Mayor, City of University Heights
Tanisha R. Briley, City Manager, Cleveland Heights
Armond Budish, County Executive
Glenn Coyne, Executive Director, Planning Commission
Timothy J. DeGeeter, Mayor, City of Parma
Michael W. Dever, MPA
Public Works Director
Kirsten Holzheimer Gail, Mayor, City of Euclid
Michael D. Gammella, Mayor, City of Brook Park
Dale Miller, County Councilman
David H. Roche, Mayor, City of Richmond Heights

Robert A. Stefanik, Mayor, City of North Royalton
Michael P. Summers, Mayor, City of Lakewood

CITY OF CLEVELAND
Anthony Brancatelli, City Councilman
Freddy L. Collier, Jr., Director, City Planning Commission
Blaine A. Griffin, City Councilman
Frank G. Jackson, Mayor, City of Cleveland
Martin J. Keane, City Councilman
Valerie J. McCall, Chief of Government & International Affairs
Matthew L. Sponz, P.E., PMP, Capital Projects Director

LAKE COUNTY
Ben Capelle, General Manager, Laketran
Jerry C. Cirino, County Commissioner
James R. Gills, P.E., P.S., County Engineer
John Hamercheck, County Commissioner
Daniel P. Troy, County Commissioner

LORAIN COUNTY
Holly C. Brinda, Mayor, City of Elyria
Kenneth P. Carney, S., P.E., P.S., County Engineer
Richard Heidecker, Trustee, Columbia Township
John D. Hunter, Mayor, Village of Sheffield
Ted Kalo, County Commissioner
Matt Lundy, County Commissioner
Chase M. Ritenauer, Mayor, City of Lorain

MEDINA COUNTY
Jeff Brandon, Trustee, Montville Township
Andrew H. Conrad, P.E., P.S., County Engineer
Adam Friedrick, County Commissioner
Patrick Patton, City Engineer, City of Medina

REGIONAL AND STATE
Greater Cleveland Regional Transit Authority (GCRTA)
Joseph A. Calabrese, CEO and General Manager

Northeast Ohio Regional Sewer District (NEORSD)
Kyle Dreyfuss-Wells, Chief Executive Officer

Cleveland-Cuyahoga County Port Authority
William D. Friedman, President/CEO

Ohio Department of Transportation (ODOT)
Myron S. Pakush, Deputy Director, District 12

Ex Officio Member:
Kurt Pricic, Chief, Northeast District Office, Ohio Environmental Protection Agency (OPEA)

NOACA DIRECTORS

Grace Gallucci, Executive Director
Billie Geyer, Comptroller
Marvin Hayes, Director of Communications & Public Affairs
Randy Lane, Director of Programming

Susanna Merlone, EMBA, Director of Administrative Services
Kathy Sarli, Director of Planning

Jonathan Giblin, Associate Director of Compliance
THE VILLAGE OF SEVILLE ROADWAY PAVEMENT MAINTENANCE REPORT

TABLE OF CONTENTS

1. Executive Summary ... 2
2. Background .. 3
3. PART I: 2016 Pavement Condition ... 8
4. PART II: 2018 Current Backlog ... 12
5. PART III: Maintenance & Rehabilitation (M&R) Program .. 13
6. PART IV: Comparative Analysis ... 15
7. Appendix... 19

MAPS

1: Village of Seville Location in the NOACA Region .. 4
2: 2016 Village of Seville Pavement Condition .. 10

FIGURES

1: 2016 Seville Pavement Network Condition Chart by Lane-Miles ... 9
2: The PCR Acceptable Level and “Need Year” Relation .. 13
3: Average PCR Comparison by the Constraint Scenarios and by Year ... 17

TABLES

1: Selected Pavement Treatments and Their Planning Level Costs .. 6
2: 2016 Seville Pavement Network Condition ... 8
3: 2016 Village of Seville Pavement Condition Listing ... 11
4: Performance Comparison of the Constraint Scenarios .. 16

APPENDIX

The “2018 Current Backlog” Pavement Treatment List ... 19
The “Maintain 15% Deficiency” Pavement Treatment List .. 20
The “Maintain an Average Network PCR of 80” Pavement Treatment List ... 21
The “M&R” Pavement Treatment List ... 22
The “Maintain Lowest Standard PCR” Pavement Treatment List ... 23
EXECUTIVE SUMMARY

The 2016 Ohio Department of Transportation (ODOT) pavement database has 3,626 segment records for the Northeast Ohio Areawide Coordinating Agency (NOACA) region. The NOACA region has a total of 3,330 centerline miles of roadways including freeways and federal-aid highways which is equivalent to 8,561 lane-miles. The regional segment average Pavement Condition Ratings (PCR) is about 77.

In the Village of Seville there are 2.14 centerline miles of federal-aid roads, which are equivalent to 5.14 lane-miles within the village boundary that include Interstate 76 (I 76) and State Route 3 (SR 3). The 2016 ODOT pavement database has six segment records for the Village of Seville roadway system. Each record comprises of several fields of various information and measures such as Street name, Length (miles), Lane-miles length, Number of Lanes, Function Class, Pavement Condition Ratings (PCR), etc.

According to the PCR measure, about 66 percent of the pavement lane-miles are currently in the “Good” to “Very Good” condition. The rest of the lane-miles (34 percent) are in the “Fair to Poor” status and demand some kind of immediate preventive maintenance and/or rehabilitation treatments.

This pavement study includes four parts:

• Part I: The 2016 pavement network condition,
• Part II: The 2018 backlog,
• Part III: The Maintenance and Rehabilitation (M&R) program,
• Part IV: The Comparative analysis.

Considering the five-year study period of 2018 - 2022, this pavement study focuses on the required preventive maintenance treatments and some rehabilitation techniques rather than reconstruction.

Part I of this study analyzes the 2016 pavement network condition and tabulates the important information of all the six road segments in the Village of Seville.

In Part II, the backlog is defined as the cost of pavement rehabilitation of all roads within one year (2018) and bringing the average network PCR to 80. Backlog is a “snapshot” or relative measure of outstanding rehabilitation work.

Part III introduces the optimal preventive maintenance and rehabilitation strategy for each segment and its recommended implementation year based on the NOACA maintenance decision tree.

Finally, Part IV compares the backlog and the “M&R” program with the NOACA transportation asset management strategies. All these strategies were compared regarding their costs, the average network PCR and percent of the lane-miles below the acceptable level.
THE VILLAGE OF SEVILLE ROADWAY PAVEMENT MAINTENANCE REPORT

BACKGROUND

Seville is a Village in Medina County. Seville was platted in 1828. It was named after Seville, in Spain. A post office was established in Seville in 1830.

As of the Northeast Ohio Areawide Coordinating Agency (NOACA) 2015 estimates, the village had a population of 2,314 and employment of 3,287. The Village of Seville includes Interstate 76 (I 76) and State Route 3 (SR 3). Cleveland-Hopkins International Airport is the nearest airport.

Map 1 illustrates the Village of Seville location in the NOACA region.
Map 1: Village of Seville Location in the NOACA Region
For the purpose of this study:

Pavement Reconstruction is defined as the replacement or reestablishment of the original pavement structural capacity by the placement of the equivalent or increased pavement structure. Reconstruction may utilize either new or recycle materials for the reconstruction of the complete pavement structure.

Pavement Rehabilitation is defined as resurfacing, restoration, and rehabilitation (3R) work consisting of structural enhancements that extend the service life of an existing pavement and/or improve its structural capacity. Rehabilitation techniques include restoration treatments and/or structural overlays. This may include partial recycling of the existing pavement, placement of additional surface materials, and/or other work necessary to return an existing pavement to a condition of structural or functional adequacy.

Preventive Maintenance is considered as cost effective treatments to an existing roadway system and its appurtenances that preserves the system, delays future deterioration, and maintains or improves the functionality condition of the system without increasing structural capacity. Projects that address deficiencies in the pavement structure or increase the structural capacity of the facility are not considered preventive maintenance.

Maintaining the roadways in a state of good repair is essential and experience has shown that, over time it is less expensive to invest in preventive maintenance and/or rehabilitation in an ongoing basis rather than in reconstruction of pavement that has deteriorated to a poor condition.

This pavement study analyzes the current status of the Seville pavement network condition and considers the five-year study period of 2018-2022. It mainly focuses on the required roadway pavement preventive maintenance treatments and some rehabilitation techniques rather than reconstruction. The 2016 Ohio Department of Transportation (ODOT) pavement database was used as the input data and RoadMatrix software was utilized as the NOACA Pavement Management platform.

Seven roadway pavement preventive maintenance and rehabilitation treatments were considered in the Seville pavement network analysis for the study period and Table 1 illustrates the selected treatment and their associated planning level costs.
Table 1: Selected Pavement Treatments and Their Planning Level Costs

<table>
<thead>
<tr>
<th>Maintenance Treatment Type</th>
<th>Cost per SQ FT (2016$)</th>
<th>Estimated Cost per 12-FT lane-Mile (2016$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack Fill</td>
<td>0.08</td>
<td>5,100</td>
</tr>
<tr>
<td>Joint Repair</td>
<td>0.24</td>
<td>15,200</td>
</tr>
<tr>
<td>Crack Fill and Slurry</td>
<td>0.4</td>
<td>25,300</td>
</tr>
<tr>
<td>Preventive Maintenance Minor</td>
<td>0.5</td>
<td>31,700</td>
</tr>
<tr>
<td>Micro – Pave Type</td>
<td></td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>Selective Patch, Mill and 1.5” O/L</td>
<td>1.5</td>
<td>95,000</td>
</tr>
<tr>
<td>2.0 inch Hot Mix Mill and Overlay</td>
<td>1.9</td>
<td>120,400</td>
</tr>
</tbody>
</table>

Pavement Maintenance Treatment Definitions

Crack Fill: It is the placement of asphalt emulsion into non-working cracks to reduce water infiltration and to reinforce the adjacent pavement.

Slurry Seal: A mixture of fine aggregate, asphalt emulsion, water, and mineral filler, used when the primary problem is excessive oxidation and hardening of the existing surface. Slurry seals are used to retard surface raveling, and improve surface friction.

Joint Repair: Used to remove deteriorated concrete pavement long joint/crack repairs. It minimizes infiltration of surface water and incompressible material into the joint system.
Preventive Maintenance (Minor): typically applied to pavements in good condition having significant remaining service life. Examples of minor preventive treatments include asphalt crack sealing, chip sealing, slurry or micro-surfacing, thin and ultra-thin hot-mix asphalt overlay, and concrete joint sealing.

Micro – Pave (Type II Surface Treatment): consist of the application of a mixture of water, asphalt emulsion, aggregate (very small crushed rock), and chemical additives. It is used to treat surfacing and rut filling on roads that get moderate to heavy levels of traffic.

2.0in Hot Mix Mill & Overlay: applied as a maintenance treatment. Thin overlays should only be placed on structurally sound pavements. That is because they offer little structural improvement, but they can renew the surface in terms of functional performance (i.e., ride quality).

Selective Patching, Mill & 1.5 O/L: it is primarily done to extend the life of a roadway. Patch mill and overlay projects are designed to remove damaged portions of the roadway and replace it with new smooth pavement.

This report includes the following four parts:

I. The 2016 status of the Seville pavement network condition,
II. The 2018 “backlog” treatment list,
III. The optimal preventive maintenance and rehabilitation strategies, and
IV. The comparative analysis.
PART I: 2016 Pavement Condition

In order to provide an accurate assessment of the current status and further pavement analyses, the pavement network is required to be divided into homogeneous discrete sections in terms of surface distress, traffic volumes, pavement structure, etc. The 2016 ODOT pavement database has six segment records for the Village of Seville roadway system. Each record comprises of several fields of various information and measures such as Street name, Length (miles), Lane-miles length, Number of Lanes, Function Class, Pavement Condition Ratings (PCR), etc.

Based on the utilized ODOT database, there are 2.14 centerline miles of federal-aid eligible roads which are equivalent to 5.14 lane-miles in the Village of Seville. The total area of roadway is 319,651 Sq. Ft.

The PCR measure is a qualitative description of the structural state of the pavement. The PCR values span a spectrum of descriptive narrative ranging from “Very Good” to “Very Poor”. Each roadway segment is scored from 0 to 100 with 0 representing completely distressed pavement and 100 indicating perfect pavement condition. The lane-mile weighted average of the Village of Seville segment PCRs is about 78. Table 2 and Figure 1 summarize the 2016 Seville pavement network conditions by percentages of roadway lane-miles length.

Table 2: 2016 Seville Pavement Network Condition

<table>
<thead>
<tr>
<th>Pavement Condition</th>
<th>PCR Range</th>
<th>Lane-Miles</th>
<th>Percent of Lane-Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Poor</td>
<td>0 - 39</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Poor</td>
<td>40 - 54</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Fair to Poor</td>
<td>55 - 64</td>
<td>1.76</td>
<td>34.2%</td>
</tr>
<tr>
<td>Fair</td>
<td>65 - 74</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Good</td>
<td>75 - 89</td>
<td>1.72</td>
<td>33.5%</td>
</tr>
<tr>
<td>Very Good</td>
<td>90 - 100</td>
<td>1.66</td>
<td>32.3%</td>
</tr>
</tbody>
</table>
As indicated, about 66 percent of the pavement lane-miles are currently in the “Good” to “Very Good” condition and the lane-mile weighted average PCR also represents a “Good” condition. The rest of the lane-miles (34 percent) are in the “Fair to Poor” status and demand some kind of immediate maintenance and rehabilitation treatments.

Map 2 illustrates the 2016 Seville roadway pavement condition for each segment record and Table 3 tabulates the 2016 Seville pavement condition listing.
Table 3: 2016 Village of Seville Pavement Condition Listing

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>FUNCTION CLASS</th>
<th>LANE-MILES</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN ST</td>
<td>MILTON ST</td>
<td>LIBERTY ST</td>
<td>MINOR COLLECTOR</td>
<td>0.14</td>
<td>98</td>
</tr>
<tr>
<td>MAIN ST</td>
<td>LIBERTY ST</td>
<td>SEVILLE ECL</td>
<td>MINOR COLLECTOR</td>
<td>0.80</td>
<td>92</td>
</tr>
<tr>
<td>MILTON ST</td>
<td>MILL ST</td>
<td>MAIN ST</td>
<td>MINOR COLLECTOR</td>
<td>0.54</td>
<td>98</td>
</tr>
<tr>
<td>STERLING RD</td>
<td>SEVILLE SCL</td>
<td>MILL ST</td>
<td>MINOR COLLECTOR</td>
<td>0.18</td>
<td>96</td>
</tr>
<tr>
<td>GREENWICH RD</td>
<td>SR 3</td>
<td>ROYAL CREST DR</td>
<td>MAJOR COLLECTOR</td>
<td>1.72</td>
<td>83</td>
</tr>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3</td>
<td>MAJOR COLLECTOR</td>
<td>1.76</td>
<td>58</td>
</tr>
</tbody>
</table>
Part II: 2018 Current Backlog

The backlog is defined as the cost of pavement rehabilitation of all roads within the current year (2018) and bringing the average network PCR to 80. Backlog is a “snapshot” or relative measure of outstanding rehabilitation work. The backlog not only represents how far behind the pavement network is in terms of its present physical condition, but also its cost value serves as a benchmark to measure the impact of various funding strategies. Additionally, the current backlog offers a basis for comparison to future and/or past year’s backlogs.

The backlog strategy does not utilize any pavement preventive maintenance treatments, but instead considers rehabilitation or reconstruction treatments. This strategy achieves the average network PCR 80, and also maintains all the pavement conditions above the minimum acceptable level. In this study, the minimum acceptable PCR for the arterial roadway function class is 55 and for the major and minor collector is 50.

The Appendix includes all the backlog pavement treatments. As illustrated, the 2018 backlog treatment list includes segments which their 2018 PCRs are below the minimum acceptable level and are recommended with various reconstruction treatments. There is one segment in the 2018 backlog list with the total of 1.76 lane-miles. The 2018 backlog cost of the recommended treatments is over 900 thousand dollars.
In order to estimate the preventive maintenance and rehabilitation requirements of a pavement network over a period of time, the first step is to determine the “Need Year” or when a pavement segment requires rehabilitation. The “Need Year” of a pavement is defined as the year in which the pavement condition falls below a critical level. Pavement condition of a road segment deteriorates under traffic, climate, etc. and consequently its PCR value is reduced. Without any treatments and depending on the deteriorating factors, pavements perform differently and Figure 2 depicts the typical acceptable level and “Need Year” relation for several road segments. As shown, the definition of the acceptable level is a critical factor in determining the “Need Year” for any road segment.

In this study, the critical level is set by the minimum acceptable PCR. As mentioned earlier, in the NOACA region, the minimum acceptable PCR for the arterial roadway function class is 55 and for the major and minor collector is 50.

Figure 2: The PCR Acceptable Level and “Need Year” Relation
The second step is to determine any feasible preventive maintenance and/or rehabilitation strategies based on a decision tree approach. The “M&R” program determines the optimal preventive maintenance and rehabilitation strategy for each segment and its recommended implementation year based on the considered decision tree. The Appendix includes all the “M&R” treatments for the identified segments with the implementation year in the period of 2018 to 2022 and the “M&R” program cost includes all the deferred maintenance cost.
PART IV: COMPARATIVE ANALYSIS

The current NOACA transportation asset management policy includes two strategies:

- Maintain 15% Deficiency: this strategy attempts to maintain the total lane-miles with PCR below the acceptable level no more than 15%.
- Maintain an Average Network PCR of 80: applies a set of maintenance treatments in order to keep the roadway network average PCR more than, or equal to 80 over the study period.

This section compares the discussed backlog and the “M&R” program treatments with the NOACA transportation asset management strategies.

In addition to the above strategies, this comparative analysis considers another scenario as the minimum benchmark. The “Maintain Lowest Standard PCR” treatment strategy is based on the minimum PCR thresholds of 55 for arterials and 50 for collectors and a set of annual budget constraints. The annual budget constraints are calculated in three steps: First, the segments with the “M&R” recommended implementation in each specific analysis year are selected. Second, a subset of the selected segments which their “Need Years” are in the analysis period are identified. It should be noted that the selected segments with the “Need Year” beyond the analysis period are excluded from the budget constraint calculation. Third, the “M&R” treatment costs for the identified segments in the second step, are added together to provide an annual budget constraint for this scenario.

As discussed, all the above scenarios apply a decision tree approach to determine technically feasible maintenance and rehabilitation strategies for each segment requiring rehabilitation during the five-year period.

Table 4 summarizes the comparison results of all the above scenarios over the five-year period for the Village of Seville. In this table, the “5-Year Total Required Dollars” column shows the accumulation of the annual costs over five years calculated based on inflation-adjusted dollars for each strategy. Also, the Network average PCR is the lane-mile weighted average.
Table 4: Performance Comparison of the Constraint Scenarios

<table>
<thead>
<tr>
<th>Maintenance Strategy</th>
<th>Strategy Group</th>
<th>5-Year Total Required Dollars</th>
<th>Network Average PCR</th>
<th>Network PCR at the End of the 5-Year Period</th>
<th>Percent of Pavement below the Minimum PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Current Backlog</td>
<td>2018 Backlog</td>
<td>936,909</td>
<td>84.6</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>Maintain 15% Deficiency</td>
<td>NOACA Transportation Asset Management Targets</td>
<td>190,361</td>
<td>86.5</td>
<td>87.7</td>
<td>190,361</td>
</tr>
<tr>
<td>Maintain an Average Network PCR of 80</td>
<td>Scenarios</td>
<td>228,512</td>
<td>88.5</td>
<td>89.9</td>
<td>228,512</td>
</tr>
<tr>
<td>M&R Program</td>
<td>Scenarios</td>
<td>190,361</td>
<td>86.5</td>
<td>87.7</td>
<td>190,361</td>
</tr>
<tr>
<td>Maintain Lowest Standard PCR</td>
<td></td>
<td>190,361</td>
<td>86.5</td>
<td>87.7</td>
<td>190,361</td>
</tr>
</tbody>
</table>

Note: The backlog required budget is for the year of 2018 only.

The Appendix lists all the treatments with their implementation years in the period of 2018 to 2022 for the above maintenance strategies.

Figure 3 illustrates the annual network average PCR for the discussed maintenance and rehabilitation strategies. It should be noted that the backlog scenario has only one value of 84.6 for 2018.
Figure 3: Average PCR Comparison by the Constraint Scenarios and by Year
As expected, the treatments of the “M&R” program maintain the pavement network condition with the highest network average PCR. This strategy requires a budget of about 200 thousand dollars during the analysis period.

The other scenarios of “Maintain an Average Network PCR of 80”, “Maintain 15% deficiency” and “Maintain Lowest Standard PCR” scenario provide almost the same level of condition with a similar budget.

It should be noted that the backlog cost as the benchmark is almost five times more than the “M&R” program cost and both strategies have a similar network average PCR. This comparison indicates that the annual maintenance investment provides a better pavement management policy with much smaller budget than the reconstruction treatments with high costs.
2018 Current Backlog

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDATION TREATMENT</th>
<th>LANE-MILES</th>
<th>TREATMENT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>MINOR REHAB WITHOUT REPAIRS (AC)</td>
<td>1.76</td>
<td>936,909</td>
</tr>
</tbody>
</table>

REQUIRED BACKLOG BUDGET (2018$)

$936,909
Maintain 15% Deficiency

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>SELECTIVE PATCH, MILL & 1.5" O/L</td>
<td>1.76</td>
<td>180,027 2019</td>
</tr>
</tbody>
</table>

THE 2019 REQUIRED BUDGET FOR THE “MAINTAIN 15% DEFICIENCY” STRATEGY

180,027

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>CRACK FILL</td>
<td>1.76</td>
<td>10,334 2022</td>
</tr>
</tbody>
</table>

THE 2022 REQUIRED BUDGET FOR THE “MAINTAIN 15% DEFICIENCY” STRATEGY

10,334

Note: The “Maintain 15% Deficiency” strategy does not have any pavement maintenance treatments with the recommended implementation years of 2018, 2020 and 2021.
Maintain an Average Network PCR of 80

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>SR 3 (CENTER ST)</td>
<td>ROYAL CREST DR</td>
<td>CRACK FILL & SLURRY</td>
<td>1.72</td>
<td>**COST (2018$)</td>
</tr>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>SELECTIVE PATCH, MILL & 1.5" O/L</td>
<td>1.76</td>
<td>**COST (2019$)</td>
</tr>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>CRACK FILL</td>
<td>1.76</td>
<td>**COST (2022$)</td>
</tr>
</tbody>
</table>

THE 2018 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY $38,151

THE 2019 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY $180,027

THE 2022 REQUIRED BUDGET FOR THE “MAINTAIN AN AVERAGE NETWORK PCR OF 80” STRATEGY $10,334

Note: The “Maintain an Average Network PCR of 80” strategy does not have any pavement maintenance treatments with the recommended implementation years of 2020 and 2021.
M&R Program

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION COST (2019$)</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>SELECTIVE PATCH, MILL & 1.5" O/L</td>
<td>1.76</td>
<td>180,027</td>
<td>2019</td>
</tr>
</tbody>
</table>

THE 2019 REQUIRED BUDGET FOR THE “M&R” PROGRAM

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION COST (2022$)</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>CRACK FILL</td>
<td>1.76</td>
<td>10,334</td>
<td>2022</td>
</tr>
</tbody>
</table>

THE 2022 REQUIRED BUDGET FOR THE “M&R” PROGRAM

Note: The “M&R” program does not have any pavement maintenance treatments with the recommended implementation years of 2018, 2020 and 2021.
Maintain Lowest Standard PCR

Pavement Treatment List

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>SELECTIVE PATCH, MILL & 1.5" O/L</td>
<td>1.76</td>
<td>180,027 2019</td>
</tr>
</tbody>
</table>

THE 2019 REQUIRED BUDGET FOR THE “MAINTAIN LOWEST STANDARD PCR” STRATEGY

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>FROM</th>
<th>TO</th>
<th>RECOMMENDED TREATMENT</th>
<th>LANE-MILES</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENWICH RD</td>
<td>HIGH ST</td>
<td>SR 3 (CENTER ST)</td>
<td>CRACK FILL</td>
<td>1.76</td>
<td>10,334 2022</td>
</tr>
</tbody>
</table>

THE 2022 REQUIRED BUDGET FOR THE “MAINTAIN LOWEST STANDARD PCR” STRATEGY

Note: The “Maintain Lowest Standard PCR” strategy does not have any pavement maintenance treatments with the recommended implementation years of 2018, 2020 and 2021.
This page has been intentionally left blank.
NOACA will STRENGTHEN regional cohesion, PRESERVE existing infrastructure, and BUILD a sustainable multimodal transportation system to SUPPORT economic development and ENHANCE the quality of life in Northeast Ohio. NOACA will STRENGTHEN regional cohesion, PRESERVE existing infrastructure, and BUILD a sustainable multimodal transportation system to SUPPORT economic development and ENHANCE the quality of life in Northeast Ohio.